Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.343
1.
Sci Rep ; 14(1): 10767, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730011

Climate change and atmospheric deposition of nitrogen (N) and sulfur (S) impact the health and productivity of forests. Here, we explored the potential impacts of these environmental stressors on ecosystem services provided by future forests in the contiguous U.S. We found that all stand-level services benefitted (+ 2.6 to 8.1%) from reductions in N+S deposition, largely attributable to positive responses to reduced S that offset the net negative effects of lower N levels. Sawtimber responded positively (+ 0.5 to 0.6%) to some climate change, but negatively (- 2.4 to - 3.8%) to the most extreme scenarios. Aboveground carbon (C) sequestration and forest diversity were negatively impacted by all modelled changes in climate. Notably, the most extreme climate scenario eliminated gains in all three services achieved through reduced deposition. As individual tree species responded differently to climate change and atmospheric deposition, associated services unique to each species increased or decreased under future scenarios. Our results suggest that climate change should be considered when evaluating the benefits of N and S air pollution policies on the services provided by U.S. forests.


Climate Change , Forests , Nitrogen , Sulfur , Nitrogen/metabolism , Sulfur/metabolism , United States , Trees , Ecosystem , Carbon Sequestration
2.
Respir Res ; 25(1): 206, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745285

BACKGROUND: Previous studies have largely neglected the role of sulfur metabolism in LUAD, and no study has combine iron, copper, and sulfur-metabolism associated genes together to create prognostic signatures. METHODS: This study encompasses 1564 LUAD patients, 1249 NSCLC patients, and over 10,000 patients with various cancer types from diverse cohorts. We employed the R package ConsensusClusterPlus to separate patients into different ICSM (Iron, Copper, and Sulfur-Metabolism) subtypes. Various machine-learning methods were utilized to develop the ICSMI. Enrichment analyses were conducted using ClusterProfiler and GSVA, while IOBR quantified immune cell infiltration. GISTIC2.0 and maftools were utilized for CNV and SNV data analysis. The Oncopredict package predicted drug information based on GDSC1. TIDE algorithm and cohorts GSE91061 and IMvigor210 evaluated patient response to immunotherapy. Single-cell data was processed using the Seurat package, AUCell package calculated cells geneset activity scores, and the Scissor algorithm identified ICSMI-associated cells. In vitro experiments was conducted to explore the role of ICSMRGs in LUAD. RESULTS: Unsupervised clustering identified two distinct ICSM subtypes of LUAD, each with unique clinical characteristics. The ICSMI, comprising 10 genes, was constructed using integrated machine-learning methods. Its prognostic power was validated in 10 independent datasets, revealing that LUAD patients with higher ICSMI levels had poorer prognoses. Furthermore, ICSMI demonstrated superior predictive abilities compared to 102 previously published signatures. A nomogram incorporating ICSMI and clinical features exhibited high predictive performance. ICSMI positively correlated with patients gene mutations, and integrated analysis of bulk and single-cell transcriptome data revealed its association with TME modulators. Cells representing the high-ICSMI phenotype exhibited more malignant features. LUAD patients with high ICSMI levels exhibited sensitivity to chemotherapy and targeted therapy but displayed resistance to immunotherapy. In a comprehensive analysis across various cancers, ICSMI retained significant prognostic value and emerged as a risk factor for the majority of cancer patients. CONCLUSIONS: ICSMI provides critical prognostic insights for LUAD patients, offering valuable insights into the tumor microenvironment and predicting treatment responsiveness.


Adenocarcinoma of Lung , Copper , Iron , Lung Neoplasms , Machine Learning , Sulfur , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Sulfur/metabolism , Copper/metabolism , Prognosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/drug therapy , Iron/metabolism , Treatment Outcome , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Predictive Value of Tests , Male , Female
3.
Protein Sci ; 33(6): e5014, 2024 Jun.
Article En | MEDLINE | ID: mdl-38747384

A heterodisulfide reductase-like complex (sHdr) and novel lipoate-binding proteins (LbpAs) are central players of a wide-spread pathway of dissimilatory sulfur oxidation. Bioinformatic analysis demonstrate that the cytoplasmic sHdr-LbpA systems are always accompanied by sets of sulfur transferases (DsrE proteins, TusA, and rhodaneses). The exact composition of these sets may vary depending on the organism and sHdr system type. To enable generalizations, we studied model sulfur oxidizers from distant bacterial phyla, that is, Aquificota and Pseudomonadota. DsrE3C of the chemoorganotrophic Alphaproteobacterium Hyphomicrobium denitrificans and DsrE3B from the Gammaproteobacteria Thioalkalivibrio sp. K90mix, an obligate chemolithotroph, and Thiorhodospira sibirica, an obligate photolithotroph, are homotrimers that donate sulfur to TusA. Additionally, the hyphomicrobial rhodanese-like protein Rhd442 exchanges sulfur with both TusA and DsrE3C. The latter is essential for sulfur oxidation in Hm. denitrificans. TusA from Aquifex aeolicus (AqTusA) interacts physiologically with AqDsrE, AqLbpA, and AqsHdr proteins. This is particularly significant as it establishes a direct link between sulfur transferases and the sHdr-LbpA complex that oxidizes sulfane sulfur to sulfite. In vivo, it is unlikely that there is a strict unidirectional transfer between the sulfur-binding enzymes studied. Rather, the sulfur transferases form a network, each with a pool of bound sulfur. Sulfur flux can then be shifted in one direction or the other depending on metabolic requirements. A single pair of sulfur-binding proteins with a preferred transfer direction, such as a DsrE3-type protein towards TusA, may be sufficient to push sulfur into the sink where it is further metabolized or needed.


Bacterial Proteins , Oxidation-Reduction , Oxidoreductases , Sulfur , Sulfurtransferases , Sulfur/metabolism , Sulfurtransferases/metabolism , Sulfurtransferases/chemistry , Sulfurtransferases/genetics , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
4.
Nat Commun ; 15(1): 4066, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744885

Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.


Archaea , Genome, Archaeal , Hot Springs , Metagenome , Metagenomics , Phylogeny , Hot Springs/microbiology , Archaea/genetics , Archaea/classification , China , Metagenomics/methods , Biodiversity , Hydrogen-Ion Concentration , Sulfur/metabolism , Temperature , Ecosystem
5.
Nat Commun ; 15(1): 4041, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740794

Due to the complexity of the catalytic FeMo cofactor site in nitrogenases that mediates the reduction of molecular nitrogen to ammonium, mechanistic details of this reaction remain under debate. In this study, selenium- and sulfur-incorporated FeMo cofactors of the catalytic MoFe protein component from Azotobacter vinelandii are prepared under turnover conditions and investigated by using different EPR methods. Complex signal patterns are observed in the continuous wave EPR spectra of selenium-incorporated samples, which are analyzed by Tikhonov regularization, a method that has not yet been applied to high spin systems of transition metal cofactors, and by an already established grid-of-error approach. Both methods yield similar probability distributions that reveal the presence of at least four other species with different electronic structures in addition to the ground state E0. Two of these species were preliminary assigned to hydrogenated E2 states. In addition, advanced pulsed-EPR experiments are utilized to verify the incorporation of sulfur and selenium into the FeMo cofactor, and to assign hyperfine couplings of 33S and 77Se that directly couple to the FeMo cluster. With this analysis, we report selenium incorporation under turnover conditions as a straightforward approach to stabilize and analyze early intermediate states of the FeMo cofactor.


Azotobacter vinelandii , Molybdoferredoxin , Nitrogenase , Selenium , Sulfur , Electron Spin Resonance Spectroscopy/methods , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/metabolism , Nitrogenase/metabolism , Nitrogenase/chemistry , Molybdoferredoxin/metabolism , Molybdoferredoxin/chemistry , Selenium/metabolism , Selenium/chemistry , Sulfur/metabolism , Sulfur/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
6.
Environ Microbiol Rep ; 16(3): e13263, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705733

Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence.


Bacteria , Geologic Sediments , Iron , Methane , Oxidation-Reduction , Sulfur , Methane/metabolism , Iron/metabolism , Sulfur/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Seawater/microbiology , Seawater/chemistry , Sulfides/metabolism , Sulfates/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny
7.
Mar Genomics ; 75: 101108, 2024 Jun.
Article En | MEDLINE | ID: mdl-38735675

Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain Cobetia sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of Cobetia bacteria. The study reports the whole genome sequence of Cobetia sp. D5 to understand its DMSP metabolism pathway. The genome of Cobetia sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that Cobetia sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of Cobetia sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.


Genome, Bacterial , Sulfonium Compounds , Sulfur , Sulfonium Compounds/metabolism , Sulfur/metabolism , Seawater/microbiology , Sulfides/metabolism , China
8.
Bioresour Technol ; 401: 130707, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663636

This study aimed to improve biochar's quality for arid land applications by using elemental sulfur as a pH reducer agent co-applied with compost or vermicompost as biological activators. Biochar pH was decreased by the addition of elemental sulfur, with the highest reduction from 8.1 to 7.2 occurring when co-amended with vermicompost. Elemental sulfur increased the water-soluble concentrations of calcium, magnesium, and many other elements, and stimulated substrate-induced respiration, especially when co-amended with vermicompost. The bacterial diversity community structure were significantly affected by all treatments. The Shannon index significantly increased in response to compost and sulfur treatments, while the vermicompost treatments showed higher microbial evenness and equitability diversity indices. Multivariate analyses indicated that elemental sulfur oxidation was associated with specific sulfur-oxidizing bacterial clusters. Integrating biochar with sulfur and (vermi)compost was found to be a promising sustainable technology for managing excessive biochar alkalinity, increasing its fertility and potential for application in aridlands.


Charcoal , Composting , Soil , Sulfur , Charcoal/pharmacology , Charcoal/chemistry , Sulfur/metabolism , Hydrogen-Ion Concentration , Soil/chemistry , Composting/methods , Bacteria/metabolism , Soil Microbiology , Oxidation-Reduction
9.
Bioresour Technol ; 401: 130747, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677382

Sulfur-driven autotrophic denitrification (SdAD) is a promising nitrogen removing process, but its applications were generally constrained by conventional electron donors (i.e., thiosulfate (Na2S2O3)) with high valence and limited bioavailability. Herein, an immobilized electron donor by loading elemental sulfur on the surface of polyurethane foam (PFSF) was developed, and its feasibility for SdAD was investigated. The denitrification efficiency of PFSF was 97.3%, higher than that of Na2S2O3 (91.1%). Functional microorganisms (i.e., Thiobacillus and Sulfurimonas) and their metabolic activities (i.e., nir and nor) were substantially enhanced by PFSF. PFSF resulted in the enrichment of sulfate-reducing bacteria, which can reduce sulfate (SO42-). It attenuated the inhibitory effect of SO42-, whereas the generated product (hydrogen sulfide) also served as an electron donor for SdAD. According to the economic evaluation, PFSF exhibited strong market potential. This study proposes an efficient and low-cost immobilized electron donor for SdAD and provides theoretical support to its practical applications.


Autotrophic Processes , Denitrification , Nitrogen , Sulfur , Sulfur/metabolism , Sulfur/chemistry , Electrons , Thiobacillus/metabolism , Polyurethanes/chemistry , Sulfates/metabolism , Bacteria/metabolism , Thiosulfates/chemistry , Thiosulfates/pharmacology
10.
J Hazard Mater ; 471: 134342, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38678705

The accumulation of microplastics in reservoirs due to river damming has drawn considerable attention due to their potential impacts on elemental biogeochemical cycling at the watershed scale. However, the effects of plastisphere communities on the sulfur cycle in the large deep-water reservoir remain poorly understood. Here, we collected microplastics and their surrounding environmental samples in the water and sediment ecosystems of Xiaowan Reservoir and found a significant spatiotemporal pattern of microplastics and sulfur distribution in this Reservoir. Based on the microbial analysis, plastic-degrading taxa (e.g., Ralstonia, Rhodococcus) involved in the sulfur cycle were enriched in the plastisphere of water and sediment, respectively. Typical thiosulfate oxidizing bacteria Limnobacter acted as keystone species in the plastisphere microbial network. Sulfate, oxidation reduction potential and organic matter drove the variations of the plastisphere. Environmental filtration significantly affected the plastisphere communities, and the deterministic process dominated the community assembly. Furthermore, predicted functional profiles related to sulfur cycling, compound degradation and membrane transport were significantly enriched in the plastisphere. Overall, our results suggest microplastics as a new microbial niche exert different effects in water and sediment environments, and provide insights into the potential impacts of the plastisphere on the sulfur biogeochemical cycle in the reservoir ecosystem.


Geologic Sediments , Microplastics , Sulfur , Water Pollutants, Chemical , Sulfur/metabolism , Microplastics/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/classification , China
11.
Anal Bioanal Chem ; 416(11): 2871-2882, 2024 May.
Article En | MEDLINE | ID: mdl-38581531

Antarctic seaweeds are vital components of polar marine ecosystems, playing a crucial role in nutrient cycling and supporting diverse life forms. The sulfur content in these organisms is particularly interesting due to its implication in biogeochemical processes and potential impacts on local and global environmental systems. In this study, we present a comprehensive characterization of seaweed collected in the Antarctic in terms of their total sulfur content and its distribution among different classes of species, including thiols, using various methods and high-sensitivity techniques. The data presented in this paper are unprecedented in the scientific literature. These methods allowed for the determination of total sulfur content and the distribution of sulfur compounds in different fractions, such as water-soluble and proteins, as well as the speciation of sulfur compounds in these fractions, providing valuable insights into the chemical composition of these unique marine organisms. Our results revealed that the total sulfur concentration in Antarctic seaweeds varied widely across different species, ranging from 5.5 to 56 g kg-1 dry weight. Furthermore, our investigation into the sulfur speciation revealed the presence of various sulfur compounds, including sulfate, and some thiols, which were quantified in all ten seaweed species evaluated. The concentration of these individual sulfur species also displayed considerable variability among the studied seaweeds. This study provides the first in-depth examination of total sulfur content and sulfur speciation in brown and red Antarctic seaweeds.


Seaweed , Seaweed/chemistry , Antarctic Regions , Molecular Weight , Ecosystem , Sulfur/metabolism , Sulfur Compounds/metabolism , Vegetables , Sulfhydryl Compounds/metabolism
12.
Environ Sci Technol ; 58(18): 8043-8052, 2024 May 07.
Article En | MEDLINE | ID: mdl-38648493

Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.


Sulfur , Sulfur/metabolism , Anaerobiosis , Hydrogen Sulfide/metabolism , Phenols/metabolism , Benzhydryl Compounds/metabolism
13.
BMC Genomics ; 25(1): 389, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649849

BACKGROUND: The genus Sulfitobacter, a member of the family Roseobacteraceae, is widely distributed in the ocean and is believed to play crucial roles in the global sulfur cycle. However, gene clusters associated with sulfur oxidation in genomes of the type strains of this genus have been poorly studied. Furthermore, taxonomic errors have been identified in this genus, potentially leading to significant confusion in ecological and evolutionary interpretations in subsequent studies of the genus Sulfitobacter. This study aims to investigate the taxonomic status of this genus and explore the metabolism associated with sulfur oxidation. RESULTS: This study suggests that Sulfitobacter algicola does not belong to Sulfitobacter and should be reclassified into a novel genus, for which we propose the name Parasulfitobacter gen. nov., with Parasulfitobacter algicola comb. nov. as the type species. Additionally, enzymes involved in the sulfur oxidation process, such as the sulfur oxidization (Sox) system, the disulfide reductase protein family, and the sulfite dehydrogenase (SoeABC), were identified in almost all Sulfitobacter species. This finding implies that the majority of Sulfitobacter species can oxidize reduced sulfur compounds. Differences in the modular organization of sox gene clusters among Sulfitobacter species were identified, along with the presence of five genes with unknown function located in some of the sox gene clusters. Lastly, this study revealed the presence of the demethylation pathway and the cleavage pathway used by many Sulfitobacter species to degrade dimethylsulfoniopropionate (DMSP). These pathways enable these bacteria to utilize DMSP as important source of sulfur and carbon or as a defence strategy. CONCLUSIONS: Our findings contribute to interpreting the mechanism by which Sulfitobacter species participate in the global sulfur cycle. The taxonomic rearrangement of S. algicola into the novel genus Parasulfitobacter will prevent confusion in ecological and evolutionary interpretations in future studies of the genus Sulfitobacter.


Genome, Bacterial , Multigene Family , Oxidation-Reduction , Phylogeny , Rhodobacteraceae , Sulfur , Sulfur/metabolism , Rhodobacteraceae/genetics , Rhodobacteraceae/classification
14.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38607253

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Oxidation-Reduction , Transaldolase , X-Ray Absorption Spectroscopy , Cysteine/chemistry , Cysteine/metabolism , Lysine/chemistry , Lysine/metabolism , Neisseria gonorrhoeae/enzymology , Neisseria gonorrhoeae/chemistry , Protein Processing, Post-Translational , Solutions , Sulfur/chemistry , Sulfur/metabolism , Transaldolase/metabolism , Transaldolase/chemistry
15.
ACS Nano ; 18(18): 11813-11827, 2024 May 07.
Article En | MEDLINE | ID: mdl-38657165

Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.


Nanoparticles , Solanum lycopersicum , Sulfur , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Sulfur/metabolism , Sulfur/chemistry , Nanoparticles/chemistry , Nanoparticles/metabolism , Photosynthesis , Surface Properties , Time Factors , Fertilizers , Stearic Acids/metabolism , Stearic Acids/chemistry , Plant Leaves/metabolism
16.
Nat Commun ; 15(1): 3269, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627381

Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich's ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin's molecular role in this fundamental process.


Frataxin , Iron-Sulfur Proteins , Iron-Sulfur Proteins/metabolism , Sulfides/metabolism , Sulfur/metabolism , Carbon-Sulfur Lyases/metabolism , Iron-Binding Proteins/metabolism
17.
Mar Environ Res ; 197: 106481, 2024 May.
Article En | MEDLINE | ID: mdl-38593647

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Seawater , Sulfonium Compounds , Animals , Seawater/chemistry , Sulfur/metabolism , Sulfonium Compounds/chemistry , Sulfonium Compounds/metabolism , Sulfides/metabolism , Bacteria/metabolism , Phytoplankton , China , Zooplankton/metabolism
18.
Sci Total Environ ; 928: 172518, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38631637

Microorganisms play important roles in the biogeochemical cycles of lake sediment. However, the integrated metabolic mechanisms governing nitrogen (N) and sulfur (S) cycling in eutrophic lakes remain poorly understood. Here, metagenomic analysis of field and bioreactor enriched sediment samples from a typical eutrophic lake were applied to elucidate the metabolic coupling of N and S cycling. Our results showed significant diverse genes involved in the pathways of dissimilatory sulfur metabolism, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). The N and S associated functional genes and microbial groups generally showed significant correlation with the concentrations of NH4+, NO2- and SO42, while with relatively low effects from other environmental factors. The gene-based co-occurrence network indicated clear cooperative interactions between N and S cycling in the sediment. Additionally, our analysis identified key metabolic processes, including the coupled dissimilatory sulfur oxidation (DSO) and DNRA as well as the association of thiosulfate oxidation complex (SOX systems) with denitrification pathway. However, the enriched N removal microorganisms in the bioreactor ecosystem demonstrated an additional electron donor, incorporating both the SOX systems and DSO processes. Metagenome-assembled genomes-based ecological model indicated that carbohydrate metabolism is the key linking factor for the coupling of N and S cycling. Our findings uncover the coupling mechanisms of microbial N and S metabolism, involving both inorganic and organic respiration pathways in lake sediment. This study will enhance our understanding of coupled biogeochemical cycles in lake ecosystems.


Geologic Sediments , Lakes , Microbiota , Nitrogen , Sulfur , Lakes/microbiology , Sulfur/metabolism , Geologic Sediments/microbiology , Nitrogen/metabolism , Eutrophication , Nitrogen Cycle , Denitrification
19.
BMC Plant Biol ; 24(1): 257, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594609

BACKGROUND: Sulfur (S) is a mineral nutrient essential for plant growth and development, which is incorporated into diverse molecules fundamental for primary and secondary metabolism, plant defense, signaling, and maintaining cellular homeostasis. Although, S starvation response is well documented in the dicot model Arabidopsis thaliana, it is not clear if the same transcriptional networks control the response also in the monocots. RESULTS: We performed series of physiological, expression, and metabolite analyses in two model monocot species, one representing the C3 plants, Oryza sativa cv. kitaake, and second representing the C4 plants, Setaria viridis. Our comprehensive transcriptomic analysis revealed twice as many differentially expressed genes (DEGs) in S. viridis than in O. sativa under S-deficiency, consistent with a greater loss of sulfur and S-containing metabolites under these conditions. Surprisingly, most of the DEGs and enriched gene ontology terms were species-specific, with an intersect of only 58 common DEGs. The transcriptional networks were different in roots and shoots of both species, in particular no genes were down-regulated by S-deficiency in the roots of both species. CONCLUSIONS: Our analysis shows that S-deficiency seems to have different physiological consequences in the two monocot species and their nutrient homeostasis might be under distinct control mechanisms.


Arabidopsis , Oryza , Genes, Plant , Arabidopsis/metabolism , Gene Expression Profiling , Sulfur/metabolism , Homeostasis , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Roots/metabolism
20.
Sci Rep ; 14(1): 7899, 2024 04 03.
Article En | MEDLINE | ID: mdl-38570566

Hutchison's niche theory suggests that coexisting competing species occupy non-overlapping hypervolumes, which are theoretical spaces encompassing more than three dimensions, within an n-dimensional space. The analysis of multiple stable isotopes can be used to test these ideas where each isotope can be considered a dimension of niche space. These hypervolumes may change over time in response to variation in behaviour or habitat, within or among species, consequently changing the niche space itself. Here, we use isotopic values of carbon and nitrogen of ten amino acids, as well as sulphur isotopic values, to produce multi-isotope models to examine niche segregation among an assemblage of five coexisting seabird species (ancient murrelet Synthliboramphus antiquus, double-crested cormorant Phalacrocorax auritus, Leach's storm-petrel Oceanodrama leucorhoa, rhinoceros auklet Cerorhinca monocerata, pelagic cormorant Phalacrocorax pelagicus) that inhabit coastal British Columbia. When only one or two isotope dimensions were considered, the five species overlapped considerably, but segregation increased in more dimensions, but often in complex ways. Thus, each of the five species occupied their own isotopic hypervolume (niche), but that became apparent only when factoring the increased information from sulphur and amino acid specific isotope values, rather than just relying on proxies of δ15N and δ13C alone. For cormorants, there was reduction of niche size for both species consistent with a decline in their dominant prey, Pacific herring Clupea pallasii, from 1970 to 2006. Consistent with niche theory, cormorant species showed segregation across time, with the double-crested demonstrating a marked change in diet in response to prey shifts in a higher dimensional space. In brief, incorporating multiple isotopes (sulfur, PC1 of δ15N [baselines], PC2 of δ15N [trophic position], PC1 and PC2 of δ13C) metrics allowed us to infer changes and differences in food web topology that were not apparent from classic carbon-nitrogen biplots.


Amino Acids , Charadriiformes , Animals , Amino Acids/metabolism , Isotopes/metabolism , Birds/metabolism , Nitrogen/metabolism , Carbon/metabolism , Sulfur/metabolism , Nitrogen Isotopes/metabolism , Carbon Isotopes/metabolism
...